周树堂

     

    周树堂 教授 博士生导师。杰出人才特区支持计划特聘教授。长期从事农业昆虫与植物保护学研究,应用组学、分子生物学、细胞生物学及遗传学的技术方法,聚焦昆虫生殖调控、生物互作与农业生物安全,揭示农作物害虫大量繁殖、环境适应和暴发危害的生物学机制。

    E-mail: szhou@henu.edu.cn



    教育和工作经历

    2015-至今,河南大学,生命科学学院,棉花生物学国家重点实验室,植物逆境生物学重点实验室,教授,副主任,主任

    2010-2015,中国科学院动物研究所,研究员,课题组长

    2005-2010,美国杜克大学,助理教授,副研究员

    2007-2009,河南农业大学,生命科学院,院长,特聘教授

    1998-2002,加拿大皇后大学,生物化学与分子生物学,博士

    1981-1985,河南农业大学,植物保护,学士



    主要荣誉与奖励

    中科院“百人计划”(A类),2010

    国家百千万人才工程,国家有突出贡献中青年专家,2015

    国务院政府特殊津贴,2016

    河南省优秀专家,2019

    河南省高层次人才-领军人才(B类),2019

    美国围产期学会“青年科学家奖”,2012



    主要学术兼职

    国际昆虫激素委员会委员

    中国昆虫学会昆虫发育与遗传专业委员会主任,国际交流与合作工作委员会副主任,基因组专业委员会委员

    河南省昆虫学会副理事长

    PLoS Genetics客座副主编,Insect Biochemistry and Molecular Biology、《昆虫学报》等编委



    教学与课程

    《普通动物学》国家级线上一流本科课程,《高级生物化学》明德班本科双语课程,《生物学专业论文写作》和《生物学文献阅读》研究生课程,《昆虫的变态与生活史》虚拟仿真实验教学



    近期科研项目

    1. 国家自然科学基金重点项目:飞蝗对环境变化生殖适应的内分泌调控机制研究(31630070),2017.01-2021.12,277万元,主持

    2. 国家自然科学基金NSFC-河南联合基金重点项目:群居型飞蝗迁飞的分子调控机制(U1804232),2019.01-2022.12,209万元,主持

    3. 国家自然科学基金联合基金重点项目:内分泌激素协同调控飞蝗周期性大量产卵的分子机制(U22A20482),2023.01-2026.12,255万元,主持

    4. 国家重点研发计划课题:蝗虫高生殖力机制与调节(2022YFD1400502),2022.09-2025.12,295万元,主持

    5. 河南省重点研发计划:玉米害虫绿色防控技术集成研究与示范(221111112200),2022.01-2024.12, 200万元,主持



     

    代表性科研成果(*通讯作者

    1. Zheng H, Wang N, Yun J, Xu H, Yang J, Zhou S*. 2022. Juvenile hormone promotes paracellular transport of yolk proteins via remodeling zonula adherens at tricellular junctions in the follicular epithelium. PLoS Genetics. 18(6):e1010292. doi: 10.1371/journal.pgen.1010292.

    2. Du E, Wang S, Luan YX, Zhou C, Li Z, Li N*, Zhou S*, Zhang T, Ma W, Cui Y, Yuan D, Ren C, Zhang J, Roth S, Li S*. 2022. Convergent adaptation of ootheca formation as a reproductive strategy in Polyneoptera. Molecular Biology and Evolution. 39(3): msac042. doi: 10.1093/molbev/msac042.

    3. Wu Z, Yang L, Li H, Zhou S*. 2021. Krüppel-homolog 1 exerts anti-metamorphic and vitellogenic functions in insects via phosphorylation-mediated recruitment of specific cofactors. BMC Biology. 19(1):222. doi: 10.1186/s12915-021-01157-3.

    4. Jing Y, Wen X, Li L, Zhang S, Zhang C, Zhou S*. 2021. The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone. Proc Natl Acad Sci USA. 118(37):e2106908118. doi: 10.1073/pnas.2106908118.

    5. Zheng H, Zeng B, Shang T, Zhou S*. 2021. Identification of G protein-coupled receptors required for vitellogenesis and egg development in an insect with panoistic ovary. Insect Science. 28(4):1005-1017. doi: 10.1111/1744-7917.12841.

    6. Wu Z#, He Q#, Zeng B, Zhou H, Zhou S*. 2020. Juvenile hormone acts through FoxO to promote Cdc2 and Orc5 transcription for polyploidy-dependent vitellogenesis. Development. 147(18). doi: 10.1242/dev.188813

    7. Song J, Zhou S*. 2020. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cellular and Molecular Life Science. 77(10),1893-1909. doi: 10.1007/s00018-019-03361-5.

    8. Zheng H, Chen C, Liu C, Song Q, Zhou S*. 2020. Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development. Insect Molecular Biology. 29, 283-292. doi: 10.1111/imb.12633

    9. Guo W, Wu Z, Yang L, Cai Z, Zhao L, Zhou S*. 2019. Juvenile hormone-dependent Kazal-type serine protease inhibitor Greglin safeguards insect vitellogenesis and egg production. The FASEB Journal. 33(1): 917-927. doi: 10.1096/fj.201801068R.

    10. Song J, Li W, Zhao H, Zhou S*. 2019. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect Biochemistry and Molecular Biology. 106:39-46. doi: 10.1016/j.ibmb.2018.11.004.

    11. Song J, Li W, Zhao H, Gao L, Fan Y, Zhou S*. 2018. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis via targeting juvenile hormone early response gene Krüppel-homolog 1. Development. 2145(24). doi: 10.1242/dev.170670.

    12. Jing Y, An H, Zhang S, Wang N, Zhou S*. 2018. Protein kinase C mediates juvenile hormone-dependent phosphorylation of Na+/K+-ATPase to induce ovarian follicular patency for yolk protein uptake. Journal of Biological Chemistry. 293(52): 20112-20122.

    13. Wu Z, Guo W, Yang L, He Q, Zhou S*. 2018. Juvenile hormone promotes locust fat body cell polyploidization and vitellogenesis by activating the transcription of Cdk6 and E2f1. Insect Biochemistry and Molecular Biology. 102: 1-10.

    14.  Luo M, Li D, Wang Z, Guo W, Kang L*, Zhou S*. 2017. Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. Journal of Biological Chemistry. 292(21): 8823-34.

    15. Wang Z, Yang L, Song J, Kang L*, Zhou S*. 2017. An isoform of Taiman that contains a PRD-repeat motif is indispensable for transducing the vitellogenic juvenile hormone signal in Locusta migratoria. Insect Biochemistry and Molecular Biology. 82, 31-40.

    16. Wu Z, Guo WXie Y, Zhou S*. 2016. Juvenile hormone activates the transcription of Cell-division-cycle 6 (Cdc6) for polyploidy-dependent insect vitellogenesis and oogenesis. Journal of Biological Chemistry. 291(10): 5418-27.

    17. Guo W, Wu Z, Song J. Jiang F, Deng S, Walker VK, Zhou S*. 2014. Juvenile hormone-receptor complex acts on Mcm4 and Mcm7 to promote polyploidy and vitellogenesis in the migratory locust. PLoS Genetics. 10(10): e1004702. #Co-first authors.

    18. Song J, Wu Z, Wang Z, Deng S, Zhou S*. 2014. Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. Insect Biochemistry and Molecular Biology. 52: 94-101.

    19. Ren D, Cai Z, Song J, Wu Z, Zhou S*. 2014. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. Insect Molecular Biology. 23(2): 175–184.

    20.  Song J, Guo W, Jiang F, Kang L, Zhou S*. 2013. Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria. Insect Biochemistry and Molecular Biology. 43(9): 879-887.