周树堂

     

    周树堂 教授 博士生导师。杰出人才特区支持计划特聘教授。长期从事农业昆虫与植物保护学研究,应用组学、分子生物学、细胞生物学及遗传学的技术方法,聚焦昆虫生殖调控、生物互作与农业生物安全,揭示农作物害虫大量繁殖、环境适应和暴发危害的生物学机制。

    E-mail: szhou@henu.edu.cn



    教育和工作经历

    2015-至今,河南大学,生命科学学院,棉花生物学国家重点实验室,植物逆境生物学重点实验室,教授,副主任,主任

    2010-2015,中国科学院动物研究所,研究员,课题组长

    2005-2010,美国杜克大学,助理教授,副研究员

    2007-2009,河南农业大学,生命科学院,院长,特聘教授

    1998-2002,加拿大皇后大学,生物化学与分子生物学,博士

    1981-1985,河南农业大学,植物保护,学士



    主要荣誉与奖励

    中科院“百人计划”(A类),2010

    国家百千万人才工程,国家有突出贡献中青年专家,2015

    国务院政府特殊津贴,2016

    河南省优秀专家,2019

    河南省高层次人才-领军人才(B类),2019

    美国围产期学会“青年科学家奖”,2012



    主要学术兼职

    国际昆虫激素委员会委员

    中国昆虫学会昆虫发育与遗传专业委员会主任,国际交流与合作工作委员会副主任,基因组专业委员会委员

    河南省昆虫学会副理事长

    PLoS Genetics客座副主编,Insect Biochemistry and Molecular Biology、《昆虫学报》等编委



    教学与课程

    《普通动物学》国家级线上一流本科课程,《高级生物化学》明德班本科双语课程,《生物学专业论文写作》和《生物学文献阅读》研究生课程,《昆虫的变态与生活史》虚拟仿真实验教学



    近期科研项目

    1. 国家自然科学基金重点项目:飞蝗对环境变化生殖适应的内分泌调控机制研究(31630070),2017.01-2021.12,277万元,主持

    2. 国家自然科学基金NSFC-河南联合基金重点项目:群居型飞蝗迁飞的分子调控机制(U1804232),2019.01-2022.12,209万元,主持

    3. 国家自然科学基金联合基金重点项目:内分泌激素协同调控飞蝗周期性大量产卵的分子机制(U22A20482),2023.01-2026.12,255万元,主持

    4. 国家重点研发计划课题:蝗虫高生殖力机制与调节(2022YFD1400502),2022.09-2025.12,295万元,主持

    5. 河南省重点研发计划:玉米害虫绿色防控技术集成研究与示范(221111112200),2022.01-2024.12, 200万元,主持



     

    代表性科研成果(*通讯作者

    1. Li Y, Lang M, He Q, Hu Y, Shi H, Zheng S, Wu Z*, Zhou S*, 2025. Nutritional and hormonal regulation of mitochondrial biogenesis drives fat body remodeling for reproductive competence. J Adv Res. (accepted)

    2. Zheng H, Hua M, Jiang M, Jiang C;Xi Y, Deng J, Xu H, Zeng B, Zhou S*. 2025. Transgenic expression of mAChR-C dsRNA in maize confers efficient locust control. Plant Communications,6(5): 101316.

    3. Wu Z, Zhao W, Lang M, He Q, Li Y, Hu Y, Liu Y, Zheng S, Shi H, Zhou S*, 2025. Juvenile hormone and BMP signaling modulate fat body cell fate during the transition of previtellogenic development to vitellogenesis. BMC Biology. 23, 143.

    4. Qiao L, Zhuang Z, Wang Y, Xie K, Zhang X, Shen Y, Song J and Zhou S*. 2025. Nocturnin promotes NADH and ATP production for juvenile hormone biosynthesis in adult insects. Pest Manag Sci 81(6): 3103-3111.

    5. Yang L, Liu Y, Wu Z, Zhou S*, 2025. Duplicated paralog of insulin receptor functions distinctively in locust reproduction for high fecundity. Insect Science. (accepted)

    6. Song J, Li W, Gao L, Yan Q, Zhang X, Liu M and Zhou S* .2024. miR-276 and miR-182013-5p modulate insect metamorphosis and reproduction via dually regulating juvenile hormone acid methyltransferase. Communications Biology 7(1): 1604.

    7. Wang H#*, Song J#, Hunt B, Zuo K, Zhou H, Hayward A, Li B, Xiao Y, Geng X, Bass C*, Zhou S*. 2024. UDP-glycosyltransferases act as key determinants of host plant range in generalist and specialist Spodoptera species, Proc Natl Acad Sci USA. 121(19):e2402045121.

    8. Zheng H, Wang N, Yun J, Xu H, Yang J, Zhou S*. 2022. Juvenile hormone promotes paracellular transport of yolk proteins via remodeling zonula adherens at tricellular junctions in the follicular epithelium. PLoS Genetics. 18(6):e1010292. doi: 10.1371/journal.pgen.1010292.

    9. Du E, Wang S, Luan YX, Zhou C, Li Z, Li N*, Zhou S*, Zhang T, Ma W, Cui Y, Yuan D, Ren C, Zhang J, Roth S, Li S*. 2022. Convergent adaptation of ootheca formation as a reproductive strategy in Polyneoptera. Molecular Biology and Evolution. 39(3): msac042. doi: 10.1093/molbev/msac042.

    10. Wu Z, Yang L, Li H, Zhou S*. 2021. Krüppel-homolog 1 exerts anti-metamorphic and vitellogenic functions in insects via phosphorylation-mediated recruitment of specific cofactors. BMC Biology. 19(1):222. doi: 10.1186/s12915-021-01157-3.

    11. Jing Y, Wen X, Li L, Zhang S, Zhang C, Zhou S*. 2021. The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone. Proc Natl Acad Sci USA. 118(37):e2106908118. doi: 10.1073/pnas.2106908118.

    12. Zheng H, Zeng B, Shang T, Zhou S*. 2021. Identification of G protein-coupled receptors required for vitellogenesis and egg development in an insect with panoistic ovary. Insect Science. 28(4):1005-1017. doi: 10.1111/1744-7917.12841.

    13. Wu Z#, He Q#, Zeng B, Zhou H, Zhou S*. 2020. Juvenile hormone acts through FoxO to promote Cdc2 and Orc5 transcription for polyploidy-dependent vitellogenesis. Development. 147(18). doi: 10.1242/dev.188813

    14. Song J, Zhou S*. 2020. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cellular and Molecular Life Science. 77(10),1893-1909. doi: 10.1007/s00018-019-03361-5.

    15. Zheng H, Chen C, Liu C, Song Q, Zhou S*. 2020. Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development. Insect Molecular Biology. 29, 283-292. doi: 10.1111/imb.12633

    16. Guo W, Wu Z, Yang L, Cai Z, Zhao L, Zhou S*. 2019. Juvenile hormone-dependent Kazal-type serine protease inhibitor Greglin safeguards insect vitellogenesis and egg production. The FASEB Journal. 33(1): 917-927. doi: 10.1096/fj.201801068R.

    17. Song J, Li W, Zhao H, Zhou S*. 2019. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect Biochemistry and Molecular Biology. 106:39-46. doi: 10.1016/j.ibmb.2018.11.004.

    18. Song J, Li W, Zhao H, Gao L, Fan Y, Zhou S*. 2018. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis via targeting juvenile hormone early response gene Krüppel-homolog 1. Development. 2145(24). doi: 10.1242/dev.170670.

    19. Jing Y, An H, Zhang S, Wang N, Zhou S*. 2018. Protein kinase C mediates juvenile hormone-dependent phosphorylation of Na+/K+-ATPase to induce ovarian follicular patency for yolk protein uptake. Journal of Biological Chemistry. 293(52): 20112-20122.

    20. Wu Z, Guo W, Yang L, He Q, Zhou S*. 2018. Juvenile hormone promotes locust fat body cell polyploidization and vitellogenesis by activating the transcription of Cdk6 and E2f1. Insect Biochemistry and Molecular Biology. 102: 1-10.

    21.  Luo M, Li D, Wang Z, Guo W, Kang L*, Zhou S*. 2017. Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. Journal of Biological Chemistry. 292(21): 8823-34.

    22. Wang Z, Yang L, Song J, Kang L*, Zhou S*. 2017. An isoform of Taiman that contains a PRD-repeat motif is indispensable for transducing the vitellogenic juvenile hormone signal in Locusta migratoria. Insect Biochemistry and Molecular Biology. 82, 31-40.

    23. Wu Z, Guo WXie Y, Zhou S*. 2016. Juvenile hormone activates the transcription of Cell-division-cycle 6 (Cdc6) for polyploidy-dependent insect vitellogenesis and oogenesis. Journal of Biological Chemistry. 291(10): 5418-27.

    24. Guo W, Wu Z, Song J. Jiang F, Deng S, Walker VK, Zhou S*. 2014. Juvenile hormone-receptor complex acts on Mcm4 and Mcm7 to promote polyploidy and vitellogenesis in the migratory locust. PLoS Genetics. 10(10): e1004702. #Co-first authors.

    25. Song J, Wu Z, Wang Z, Deng S, Zhou S*. 2014. Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. Insect Biochemistry and Molecular Biology. 52: 94-101.

    26. Ren D, Cai Z, Song J, Wu Z, Zhou S*. 2014. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. Insect Molecular Biology. 23(2): 175–184.

    27.  Song J, Guo W, Jiang F, Kang L, Zhou S*. 2013. Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria. Insect Biochemistry and Molecular Biology. 43(9): 879-887.



    授权专利

    1. 周树堂;曾保娟;化梦珂;许慧晶;邓景才;席玉玺;郑洪远; 飞蝗E-cadherin基因及其dsRNA在飞蝗防治中的应用,2024-6-11,中国,ZL202311362503.9